Regularity estimates for elliptic boundary value problems in Besov spaces

نویسندگان

  • Constantin Bacuta
  • James H. Bramble
  • Jinchao Xu
چکیده

We consider the Dirichlet problem for Poisson’s equation on a nonconvex plane polygonal domain Ω. New regularity estimates for its solution in terms of Besov and Sobolev norms of fractional order are proved. The analysis is based on new interpolation results and multilevel representations of norms on Sobolev and Besov spaces. The results can be extended to a large class of elliptic boundary value problems. Some new sharp finite element error estimates are deduced.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Besov Regularity for Elliptic Boundary Value Problems

This paper studies the regularity of solutions to boundary value problems for Laplace's equation on Lipschitz domains in R d and its relationship with adaptive and other nonlinear methods for approximating these solutions. The smoothness spaces which determine the eeciency of such nonlinear approximation in L p (() are the Besov spaces B (L (()), := (=d + 1=p) ?1. Thus, the regularity of the so...

متن کامل

Linear and nonlinear degenerate boundary value problems in Besov spaces

Keywords: Boundary value problems Differential-operator equations Banach-valued Besov spaces Operator-valued multipliers Interpolation of Banach spaces a b s t r a c t The boundary value problems for linear and nonlinear degenerate differential-operator equations in Banach-valued Besov spaces are studied. Several conditions for the separability of linear elliptic problems are given. Moreover, t...

متن کامل

Resolvent Estimates for Elliptic Systems in Function Spaces of Higher Regularity

We consider parameter-elliptic boundary value problems and uniform a priori estimates in Lp-Sobolev spaces of Bessel potential and Besov type. The problems considered are systems of uniform order and mixed-order systems (Douglis-Nirenberg systems). It is shown that compatibility conditions on the data are necessary for such estimates to hold. In particular, we consider the realization of the bo...

متن کامل

Strongly Elliptic Second-Order Systems with Boundary Conditions on a Nonclosed Lipschitz Surface∗

We consider boundary value problems and transmission problems for strongly elliptic second-order systems with boundary conditions on a compact nonclosed Lipschitz surface S with Lipschitz boundary. The main goal is to find conditions for the unique solvability of these problems in the spaces H , the simplest L2-spaces of the Sobolev type, with the use of potential type operators on S . We also ...

متن کامل

Layer Potentials and Boundary-Value Problems for Second Order Elliptic Operators with Data in Besov Spaces

This monograph presents a comprehensive treatment of second order divergence form elliptic operators with bounded measurable t-independent coefficients in spaces of fractional smoothness, in Besov and weighted L classes. We establish: (1) Mapping properties for the double and single layer potentials, as well as the Newton potential; (2) Extrapolation-type solvability results: the fact that solv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Comput.

دوره 72  شماره 

صفحات  -

تاریخ انتشار 2003